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Ageing is a physiological process of progressive decline in the organism function over time. It affects every organ in the body and
is a significant risk for chronic diseases. Molecular hydrogen has therapeutic and preventive effects on various organs. It has
antioxidative properties as it directly neutralizes hydroxyl radicals and reduces peroxynitrite level. It also activates Nrf2 and
HO-1, which regulate many antioxidant enzymes and proteasomes. Through its antioxidative effect, hydrogen maintains
genomic stability, mitigates cellular senescence, and takes part in histone modification, telomere maintenance, and proteostasis.
In addition, hydrogen may prevent inflammation and regulate the nutrient-sensing mTOR system, autophagy, apoptosis, and
mitochondria, which are all factors related to ageing. Hydrogen can also be used for prevention and treatment of various
ageing-related diseases, such as neurodegenerative disorders, cardiovascular disease, pulmonary disease, diabetes, and cancer.
This paper reviews the basic research and recent application of hydrogen in order to support hydrogen use in medicine for

ageing prevention and ageing-related disease therapy.

1. Introduction

Ageing is a physiological process of progressive decline in an
organism’s functional reserve. It is almost universal through-
out the living world [1]. Researchers have focused on explor-
ing the underlying cellular mechanisms of ageing for
decades [2] and have found that a variety of metabolic, bio-
chemical, and molecular alterations that occur at a cellular
level contribute to functional losses during the ageing pro-
cess [3]. Nine candidate pathways contributing to the pro-
cess of ageing have been identified and categorized as the
“hallmarks of ageing” [4] (Figure 1).

Ageing represents a continuous risk of chronic noncom-
municable diseases, such as neurodegenerative diseases, car-
diovascular diseases (CVDs), diabetes, and cancer [5],
although it is not the only factor. Over the past decades,
the average human life expectancy has become substantially
longer [6]. In particular, the absolute number of elderly peo-
ple has increased in many countries [7]. Understanding the
ageing mechanism and then further delaying the ageing pro-
cess and the onset of age-related pathologies are of great
importance.

Molecular hydrogen (H,) is a colorless, odorless gas and
is the lightest among all gas molecules. Its therapeutic effect
was first demonstrated in skin squamous carcinoma treat-
ment [8]. In some bacteria, H, can be enzymatically catabo-
lized as an electron source. It can also be a product of
anaerobic metabolism. In mammalian cells that have no
functional hydrogenase genes, it was determined to be an
inert gas that does not react with any biological compounds
[9]. However, in 2007, investigators have discovered that H,
has antioxidant properties after selectively neutralizing
hydroxyl radicals (¢OH) and peroxynitrite (ONOO") in cul-
tured cells. It also prevented ischemia-reperfusion (I/R)
injury and stroke in a rat model [10]. To date, prosurvival
properties of some antioxidants have been demonstrated in
some disease models [11]. H, has been shown to improve
lipid and glucose metabolism in patients with mild type 2
diabetes mellitus or impaired glucose tolerance [12]. More-
over, a recent study has shown that hydrogen-rich water
(HRW) intake favorably affected several ageing-related fea-
tures in healthy elderly, including extended mean telomere
length, and tended to improve DNA methylation [13]. This
review discusses the possible underlying mechanisms of H,
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Ficure 1: Hallmarks of ageing. Primary hallmarks are all
considered to be unequivocally negative and cause cell damage.
Antagonistic hallmarks exert beneficial effects at low levels but
become harmful at high levels. Integrative hallmarks are results of
previous two categories, directly influencing tissue homeostasis
and function.

acting against ageing and its potential preventive and thera-
peutic applications in ageing-related diseases.

2. Potential Mechanisms of Molecular H,
Acting against Ageing

2.1. Antioxidation

2.1.1. Oxidative Stress. Reactive oxygen species (ROS) and
reactive nitrogen species (RNS) are reactive radical and non-
radical derivatives of oxygen and nitrogen, respectively [14].
They are produced by all aerobic cells and play critical roles
in both normal physiological and pathological conditions.
ROS and RNS are generated through endogenous and exog-
enous routes. Endogenous routes include ROS generated in
mitochondria nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, lipoxygenase, and angiotensin II. Exoge-
nous routes include air and water pollution, tobacco, alco-
hol, heavy metals, industrial solvents, cooking, and
radiation, which are metabolized into free radicals inside
the body [14, 15].

The oxidative stress occurs when there is an imbalance
in formation and removal of ROS and RNS due to metabolic
and pathophysiological changes and environmental stress
exposure [16].Oxidative stress can cause accumulative oxi-
dative damage in macromolecules (lipids, DNA, and pro-
teins) and eventually lead to age-associated functional
losses [14, 17, 18]. Genomic instability is a common denom-
inator of ageing. In vitro studies have shown that ROS can
induce DNA damage by directly oxidizing nucleoside bases
and inducing replication stress [19]. They also cause mito-
chondrial DNA (mtDNA) strand breaks and degradation
[20] in vivo, while ionization radiation and ultraviolet light
exposure may also be associated with DNA damage. How-
ever, it may not be a key species participating in endogenous
oxidative DNA damage [21]. Moreover, researchers in
recent years have unexpectedly observed that increasing
ROS does not accelerate ageing, while decreasing ROS levels
by increasing antioxidant defenses may result in shortened
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lifespan [17]. Nevertheless, ROS and RNS may play a critical
role in the ageing process, and the relationship between
ROS/RNS and ageing is complex. ROS and RNS can both
be beneficial and detrimental depending on the species and
conditions.

2.1.2. Characteristics of Antioxidative Effect due to H, The
antioxidant activity of H, is the basis of its preventive and
therapeutic effects. H, has been shown to exert its beneficial
effects in various pathological conditions that involve free
radicals and oxidative stress [22-24], as reflected by a reduc-
tion in malondialdehyde (MDA), 8-hydroxy-2'-deoxygua-
nosine (8-OHdG), myeloperoxidase (MPO), and 4-
hydroxynonenal (4-HNE).

The mechanism of antioxidative effect due to H,
involves the following aspects (Figure 2):

(1) H, Directly Neutralizes «OH. The «OH is produced by the
Fenton reaction and Haber-Weiss reaction [25, 26], and
*OH formed in vivo reacts with biomolecules present at its
formation site, making it difficult to trap ¢OH and directly
demonstrate its formation in the biological systems [25].
H, can accumulate in the lipid phase more than in the aque-
ous phase, especially in the unsaturated lipid region, which is
the main location for the primary free radical chain reac-
tions [27]. Therefore, H, may have an advantage in sup-
pressing these reactions.

(2) H, Directly Scavenges ONOO™. Compared to ¢OH, the
half-life of ONOO™ is long, which has a greater chance to
react with H, at the lesion site [28, 29]. In addition, H,
inhibits the generation of nitrotyrosine, which reflects the
generation of ONOO™ [30]. However, there is a controversy
regarding the direct reaction of H, with ONOO™ and its
influence on tyrosine nitration by ONOOH [31]. This dis-
crepancy may be caused by different experimental condi-
tions and investigators and requires further study.

(3) H, Indirectly Reduces Nitric Oxide (NO) Production. NO
is produced by nitric oxide synthase (NOS). High amounts
of NO resulting from inducible NOS (iNOS) can trigger
the inflammatory process, which is associated with ageing
and inflammatory conditions, such as type 2 diabetes and
Alzheimer’s disease (AD) [32]. H, does not scavenge NO.
However, it inhibits iNOS expression [33, 34], decreasing
its related NO production. Additionally, H, may eliminate
the NO-derived ONOO™, which is formed through a reac-
tion between superoxide anion (O,°) and NO. This may
consume NO and indirectly decrease its quantity [35].

(4) H, Inhibits NADPH Oxidase Activity. NADPH oxidase is
a prooxidative enzyme that transfers electrons from
NADPH to oxygen to generate O,° and other downstream
ROS [36]. Several homologs of the cytochrome NADPH oxi-
dase subunit have been found, including NOX1-5, DUOX1,
and DUOX2 [36]. H, suppresses the NADPH oxidase activ-
ity and downregulates NOX2 and NOX4 expression, which
are notably relevant to cardiac pathophysiology, such as car-
diac hypertrophy and interstitial fibrosis [37, 38]. Further
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FIGURE 2: Antioxidative effect of H,. H, can directly neutralize
¢OH and ONOO", reduce NO production by inhibiting iNOS
expression and eliminating NO-derived ONOO~ while
suppressing NADPH oxidase and MDA, and decrease ROS in
mitochondria, which is the main ROS generation location. In
addition, H, can activate Nrf2, inducing HO-1 expression and
enhancing the transcription of CAT, GPX1, and GSH.

study has shown that H, decreased the levels of NADPH
oxidase subunits, including p40 phox, p47 phox, and p67
phox in the cell membrane, but increased their levels in the
cytoplasm. By limiting the translocation of these molecules
to the cell membrane, H, reduces the NADPH oxidase activ-
ity [39].

(5) H, Decreases Mitochondrial ROS. ROS are mainly gener-
ated in the mitochondria [40]. H, is the smallest molecule
and therefore capable of passing through the mitochondrial
membrane to neutralize «OH and ONOO™ [41]. In addition,
H, suppresses electron leakage in the electron transport
chain (ETC), prevents superoxide generation in the mito-
chondrial complex I, rectifies the electron flow, and thus
suppresses oxidative damage in the mitochondria [42].

(6) H, Induces Antioxidant Gene Expression and Increases
Antioxidant Enzyme Activity. In addition to directly reduc-
ing oxidative stress, H, can trigger the antioxidation systems.
The NF-E2-related factor 2 (Nrf2) functions as an important
defense system against oxidative stress by inducing expres-
sion of various genes, such as heme oxygenasel (HO-1).
H, can activate Nrf2 and induce its translocation into the
nucleus, enhancing the transcription of catalase (CAT) and
glutathione 1 (GPX1) [43].

(7) Neutrophil Activity Action. Neutrophils are great pro-
ducers of ROS and play a role in ageing [44]. H, reduces
neutrophil infiltration in the injured tissue [45], potentially
decreasing the generation of ROS. MPO is a heme-
containing peroxidase that is mainly expressed in neutro-
phils. It plays an important role in microbial killing by neu-
trophils but is also a local mediator of tissue damage and the
resulting inflammation in various inflammatory diseases
[46]. As discussed above, H, can decrease the amount of
MPO [47], which may be associated with inhibition of its
release by neutrophils.

2.1.3. Impact of H, on Ageing Hallmarks via
antioxidative Effect

(1) Maintaining Genome Stability. As mentioned above, ROS
contribute to accumulative DNA damage, which is one of
the common denominators of ageing. H, protects against
DNA damage caused by various stimulations through its anti-
oxidative effect. In radiation-caused DNA damage, H, allevi-
ated nucleobase DNA damage in aerated aqueous solutions
[48] and reversed exhausted cellular endogenous antioxidants
[49]. In ultraviolet A- (UVA-) induced skin damage, H, signif-
icantly alleviated nuclear condensation and DNA fragmenta-
tion of keratinocytes [50]. Similarly, in cigarette smoke- (CS-
) induced emphysema, H, significantly decreased phosphory-
lated histone H2AX and 8-OHdG levels, which are markers of
oxidative DNA damage [51]. Oral administration of water
containing hydrogen-rich saline (HRS) prepared in alternat-
ing current electrolysis was effective for preventing systemic
oxidative DNA injuries and for clinical diabetes treatment
[52]. These findings suggest that H, can potentially intervene
in accumulation of genetic damage in the living body caused
by oxidative stress and alleviate the ageing process.

(2) Modulating Cellular Senescence. Cellular senescence is a
stress response characterized by arrested cell proliferation
and resistance to apoptosis [53]. It takes part in tumor sup-
pression and ageing process in vertebrates and plays an
important role in maintaining body homeostasis [54, 55].
However, senescent cells are also drivers of ageing that con-
tribute to a series of age-related pathologies [55].

H, modulates cell senescence in multiple cell types. When
human umbilical vein endothelial cells were induced by
2,3,7,8-tetrachlorodibenzo-p-dioxin, which can strongly
induce cellular senescence, the cells exhibited increased
expression of 8-OHdG and acetyl-p53, decreased the ratio of
NAD (+) to NADPH, impaired Sirtl activity, and activated
senescence-associated protein f3-galactosidase. H, inhibited
these senescence-related changes by activating the Nrf2 path-
way [56]. When H, was produced in nanoparticles that do not
easily disappear and collapse after a long period of time under
water, it inhibited the accumulation of f-galactosidase in
hydroxyurea-induced oxidative stress and protected against
senescence and death in murine embryonic fibroblasts [57].
In a pyocyanin-stimulated cyto eOH-induced cellular senes-
cence model, supersaturated concentrations of H, added into
the cell culture medium suppressed cyto eOH-mediated lipid
peroxide formation and cellular senescence induction, and
the investigator speculated that H, generated in human gut
bacteria may be involved in the suppression of aging [58].

(3) Effect on Epigenetic Alterations. Epigenetic alterations
include alterations in modification of histones, DNA meth-
ylation, and chromatin remodeling [4].

For histone modification, manipulations of histone-
modifying enzymes may influence the ageing process [4].
Studies have shown that H, can modulate histone methyla-
tion and acetylation.



In the liver of mice and rats, H, treatment changed the
H3K27 methylation status and induced H3K27 demethylase,
which can activate mitochondrial unfolded protein
response-related genes to protect the mitochondrial func-
tion. It also activated the expression of a series of genes reg-
ulated by the histone H3K27 methylation status [59].

Sirtuins are NAD (+)-dependent histone deacetylases that
regulate various physiological functions. Human sirtuin iso-
form Sirt1-7 is considered an attractive therapeutic target for
aging-related diseases [60]. Studies have shown that H, can
modulate the sirtuin family via its antioxidative effect. In the
kidneys, H, suppressed the downregulated Sirt3 expression,
which is the most abundant member of the sirtuin family, by
reducing oxidative stress reactions [61]. In the liver, H, ele-
vated HO-1 to induce Sirtl expression, inhibited the inflam-
matory response and apoptosis, and suppressed palmitate-
mediated abnormal fat metabolism [62, 63]. In the blood ves-
sels, H, inhibited oxidized low-density lipoprotein and
induced inflammatory cytokine expression via Sirtl-
mediated autophagy, potentially inhibiting the progression of
atherosclerosis [64].

The effects of H, on DNA methylation and chromatin
remodeling remain unclear.

(4) Effect on Telomere Attrition. Telomeres are particularly
susceptible to age-related deterioration. Physically, ageing
in mammals is accompanied by a progressive loss of telo-
mere length and function due to normal replication [65,
66]. The telomere shortening rate may be accelerated by oxi-
dative stress [67]. It can thus be inferred that H, can alleviate
telomere shortening via its action on inflammation and oxi-
dative stress. However, studies that have specifically
explored the effect of H, on telomere maintenance are lim-
ited. Recently, a randomized controlled pilot trial showed
that HRW intake for six months extended mean telomere
length by ~4% [13]. More studies are still needed to deter-
mine the intervention effect of H, on telomere-lengthening
and to identify its potential mechanism.

Collectively, these multiple lines of inquiry indicate that
by modulating ROS and reducing oxidative stress, H, holds
a great promise to maintain DNA stability, modulate cell
senescence, alleviate epigenetic alterations and telomere
attrition, and extend a healthy lifespan [68].

2.2. Anti-inflammation

2.2.1. Inflammation and Inflamm-Ageing. Inflammation is a
protective life process that repairs damaged lesions and
restores homeostasis by inhibiting injurious activators. It is
a dynamic and continuous remodeling network as a result
of the interaction among genes, lifestyles, and environments
[69, 70]. However, it is not always helpful and may even be
harmful when it persists and becomes chronic [71, 72]. It
is now increasingly recognized that inflammation is the
common molecular pathway that underlies the pathogenesis
of diverse diseases ranging from infection to chronic ageing-
related diseases and ageing itself [73]. The so-called
“inflamm-ageing” is a chronic subclinical systemic progres-
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sive increase in inflammation and is an important character-
istic of the ageing process [74]. The extended lifespan may
be a consequence of pro- and anti-inflammatory process
fine-tuning [75]. Thus, imbalance in pro- and anti-
inflammatory cytokines may take part in the process of
inflamm-ageing. In addition, imbalance in age-related redox,
DNA damage, decreased autophagy activity, and increased
senescent cell numbers, especially in the immune system
with ageing, also play important roles in the process of
inflamm-ageing [72, 76].

2.2.2. Anti-inflammatory Effect of H, and Its Impact on
Ageing Hallmarks. The mechanism for the anti-
inflammatory effects of H, involves several aspects.

(1) H, reduces the release of proinflammatory cytokines,
including interleukin- (IL-) 1, IL-6, tumor necrosis
factor-a (TNF-a), nuclear factor kappa B (NF-xB),
and high-mobility group box 1 (HMGB1) [77-79].
It also increases the level of anti-inflammatory cyto-
kines, such as IL-4, IL-10, and IL-13 [63, 80]

(2) H, promotes macrophage polarization from proin-
flammatory M1 type to anti-inflammatory M2 type,
which in turn generates additional anti-
inflammatory cytokines, such as IL-10 and trans-
forming growth factor- (TGF-) 8 [80]

(3) H, reduces the aggregation and infiltration of mac-
rophages and neutrophils [81, 82]

(4) The anti-inflammatory effect of H, may involve
inhibiting several inflammatory pathways. (1) NF-
«B pathway: H, inhibits the NF-«B pathway in vari-
ous disease conditions. It is the most common
inflammatory pathway that takes part in a variety
of pathological models, including the ageing process
[67, 83]. (2) NLRP3 pathway: H, inhibits NLRP3,
which fuels both chronic and acute inflammation
and contributes to inflamm-ageing [84, 85]. (3)
Toll-like receptor (TLR) 4-mediated inflammatory
pathway: H, inhibits TLR4, which involves hypergly-
cemia in type 2 diabetes mellitus [86]

Inflammation is a prominent ageing-related process that
alters intercellular communication. H, also inhibits chronic
inflammation, which may contribute to inflamm-ageing.
For example, it improved inflaimmation biomarkers in
patients with metabolic syndrome [87] and attenuated
inflammatory airway status in patients with asthma and
chronic obstructive pulmonary disease (COPD), especially
tobacco smoke-induced COPD [88]. In the brain, H, can
inhibit neuroinflammation caused by a variety of pathologi-
cal conditions, such as cerebrovascular disease, neonatal
brain disorders, and neurodegenerative disease [89]. There-
fore, H, can effectively attenuate the inflammation process
in diverse pathological conditions, slow down the inflamm-
ageing process, and prevent ageing-related diseases. Further
studies are needed to investigate how H, regulates the phys-
iological process of ageing via its anti-inflammatory effects.
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2.3. Regulating mTOR and Autophagy

2.3.1. mTOR, Autophagy, and Ageing. mTOR is a multifunc-
tion protein that can integrate signals based on nutrient
availability, energy status, growth factors, and various
stressors and regulate key cellular processes, including
mRNA translation, protein synthesis, autophagy, transcrip-
tion, and mitochondrial function. All of these functions are
involved in maintaining cellular homeostasis and modulat-
ing extended lifespan [90, 91]. Therefore, mTOR is a key
modulator of ageing and age-related disease [92].
Autophagy is an evolutionarily ancient and highly con-
served catabolic process that involves a series of evolution-
arily conserved autophagy-related genes (Atg) [93, 94].
mTOR is a primordial negative modulator of human
autophagy and is inhibited under fasting conditions by acti-
vating mTOR targets ULK1, ULK2, and Atgl3 [95]. A previ-
ous study has shown that increased autophagy delayed
ageing and extended longevity while decreasing autophagy
by mutating essential Atg genes that inhibit longevity [96].

2.3.2. Modulatory Effect of H, on mTOR and Autophagy and
Its Impact on Ageing Hallmarks. Deregulated nutrient-
sensing and loss of proteostasis are two other ageing hall-
marks. mTOR belongs to one of the nutrient-sensing sys-
tems. Dysregulation of mTOR signaling can result in
metabolic disorders, neurodegeneration, cancer, and ageing
[97]. For example, the activity of mTOR increases during
ageing and contributes to age-related obesity. This can be
reversed by directly infusing rapamycin to the hypothalamus
[98]. Impaired proteostasis, such as misfolded or aggregated
proteins, contributes to the development of AD, Parkinson’s
disease (PD), and cataracts. Proteostasis is maintained by
stabilizing correctly folded proteins and by degrading pro-
teins through the proteasome or lysosome [4, 99]. The
autophagy-lysosomal system often experiences an ageing-
associated decline [100]. Therefore, measurements targeting
autophagy can potentially improve proteostasis and delay
the ageing process.

H, modulates mTOR and autophagy in multiple diseases
and conditions. For example, H, inhibits mTOR, activates
autophagy, and alleviates cognitive impairment resulting
from sepsis [101]. It inhibits the activation of the PTEN/
AKT/mTOR pathway and alleviates peritoneal fibrosis
[102]. The activated mTOR/TFEB autophagy alleviates the
LPS-induced endothelial damage [103].

It also facilitates autophagy-mediated NLRP3 inflamma-
some inactivation and alleviates mitochondrial dysfunction
and organ damage [104, 105]. In chronic diseases, H, acti-
vates FoxOl-mediated autophagy and exerts beneficial
effects on chronic cerebral hypoperfusion-induced cognitive
impairment [106].

Most of the studies have focused on the pathological
conditions. At present, there is no direct evidence that H,
administration delays the normal ageing process through
autophagy. However, it is conceivable that long-term admin-
istration of H, can modulate mTOR and autophagy to help
remove aggregated or misfolded proteins or defective organ-
elles, subsequently maintaining proteostasis and cellular

homeostasis and potentially delaying the ageing process
and ageing-related diseases.

Paradoxically, H, may inhibit autophagy in some condi-
tions [107].

Autophagy is a two-edged sword, as its excess may cause
cell death and have other harmful effects on the body. None-
theless, H, can harness autophagy to achieve the ultimate
goal of maintaining homeostasis in the body.

2.4. Regulating Mitochondria

2.4.1. Mitochondria and Ageing. Mitochondria are cellular
powerhouses for producing ATP required by the cell [108].
In addition, emerging investigations have focused on their
role in ageing. As cells and organisms age, the eflicacy of
the respiratory chain tends to decrease, leading to an
increase in electron leakage and a reduction in ATP genera-
tion [109]. The mechanisms involved in mitochondrial age-
ing include mtDNA damage, oxidation of mitochondrial
protein, dysregulation of mitochondrial dynamics, and
impaired mitophagy that causes the accumulation of aber-
rant mitochondria as demonstrated in cardiovascular, meta-
bolic, and neurodegenerative disorders [110-113].Therefore,
mitochondria are promising therapeutic targets for influenc-
ing specific age-related disorders [111].

2.4.2. Protective Effect of H, on Mitochondria and Its Impact
on Ageing Hallmarks. Mitochondrial dysfunction is one of
the ageing hallmarks. Improving mitochondrial function
may delay the ageing process and extend lifespan.

As mentioned above, H, prevents mitochondrial oxida-
tive stress by directly neutralizing ROS in mitochondria
and suppresses the electron leakage in ETC. In addition,
H, can improve mitochondrial function represented by the
following mechanism: (1) H, can block the opening of the
mitochondrial permeability transition pores and restore
mitochondrial construction and function in the cell [114];
(2) H, regulates mitochondrial dynamics by increasing the
levels of MFN2 and decreasing Drpl [115]; (3) H, modu-
lates mitophagy, which is an important mitochondrial qual-
ity control mechanism, and alleviates inflammation and
apoptosis in tissue injury [116, 117]; (4) H, can target mito-
chondria to improve the energy metabolism. It stimulates
mitochondrial ETC function and increased levels of ATP
production by complex I and II substrates [118]. (5) H,
modulates mitohormesis, a process in which low and noncy-
totoxic concentrations of ROS promote mitochondrial
homeostasis [119], as manifested by enhanced mitochon-
drial activities with an elevated level of oxidative stress,
and then increases expression of antioxidative enzymes [43].

These findings outline the possibilities that H, targets
mitochondria to prevent ageing-related injury, providing a
new way to delay ageing and ageing-related disorders.

2.5. Regulating Apoptosis

2.5.1. Apoptosis and Ageing. Apoptosis is a canonical form of
programmed cell death [120]. It plays an indispensable role
in both physiological and pathological conditions. For exam-
ple, it is involved in developmental processes, including cell



differentiation and tissue remodeling, it provides an impor-
tant anticancer mechanism, and the p53 pathway is a vital
modulator in this response [121]. Abnormal regulation of
apoptosis is associated with a variety of human diseases,
including developmental disorders, neurodegeneration, and
cancer [122]. Ageing is associated with decreased apoptosis
and increased cell senescence. Increased resistance to apo-
ptosis in the ageing process can lead to the survival of post-
mitotic cells but at the price of damaging housekeeping
functions [123].

2.5.2. Effect of H, on Apoptosis and Its Impact on Ageing
Hallmarks. H, can modulate apoptosis in various disease
models. In most cases, H, protects tissue from injury through
antiapoptotic effects, such as inhibiting the expression of proa-
poptotic factors Bax, caspase-3, caspase-8, and caspase-12,
inhibiting p53 signaling, and upregulating antiapoptotic fac-
tors, such as Bcl-2 and Bcl-xl [124-126]. However, it may pro-
mote apoptosis in some conditions. For example, apoptosis
evasion is a prominent hallmark of cancer that is closely asso-
ciated with ageing, where H, increases rates of early and late
apoptosis in lung cancer [127, 128], facilitates scavenging of
carcinoma cells in the body, and reduces proliferation of can-
cer cells. This proapoptotic effect in cancer cells indicates that
H, can modulate cell death to protect the body against harm-
ful attacks and maintain homeostasis in the body. Whether H,
can affect ageing hallmarks through apoptosis remains
unknown and requires further studies.

The antiageing mechanism of H, and the influence on
ageing hallmarks are summarized in Figure 3.

3. Prevention and Therapy Using H, in Ageing-
Related Diseases

As many infectious diseases can be cured, more and more
people now die of noncommunicative diseases, although
these types of illnesses cannot be simply attributed to ageing
alone. Efforts to delay the onset of diseases have been made
in the past decades, but most diseases still maintain a signif-
icant impact on the population [129]. The studies on H, in
the areas of prevention and therapy in ageing-related dis-
eases may provide some information for treating these con-
ditions in human beings.

3.1. Effects of H, on Neurodegenerative Disorders

3.1.1. Effects of H, on AD. In AD, Af3 accumulation stimu-
lates a proinflammatory response in resident immune cells,
microglia, and astrocytes in the brain, leading to plaque
phagocytosis, as well as their proteolytic degradation. In
addition, the aggravated proinflammatory state occurring
during the process of disease can trigger the hyperphosphor-
ylation of tau [130]. Furthermore, microglia, which produce
excessive A3 and become senescent in the progression of
AD, continue to produce proinflammatory, microglia-
recruiting mediators, including cytokines and chemokines.
This results in them becoming overactive in neurodegenera-
tion, eventually leading to more microglia becoming senes-
cent [131].
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Animal studies have shown that H, can alleviate AD by
inhibiting the inflammatory response and oxidative stress. In
a rat model utilizing intracerebroventricular injection of Ap,
intracerebroventricular injection of hydrogen saline (HS) pre-
vented Af-induced neuroinflammation and oxidative stress,
significantly suppressed inflammatory cytokines (IL-6, TNF-
a, and IL-1f3), MDA, and 8-OHdG, and improved memory
dysfunction [132]. A further study has demonstrated that H,
attenuates the activation of c-Jun NH,-terminal kinase (JNK)
and nuclear NF-«B, which are involved in neuroinjury [133].
HRW can also upregulate Sirtl-Forkhead box protein O3a
(FOXO3a) by stimulating AMP-activated protein kinase to
alleviate potential Af-induced mitochondrial loss and oxida-
tive stress [134]. In addition to suppressing memory impair-
ment and neurodegeneration, drinking hydrogen water
(HW) directly extended the mean lifespan in a dementia rat
model. Interestingly, in a transgenic AD mouse model, inves-
tigators found that three months of HRW treatment more
profoundly ameliorated oxidative stress and inflammatory
responses in the brains of female transgenic AD mice than
in those of males. This sex-specific beneficial effect of H, was
associated with estrogen and brain ERS-BDNF signaling in
AD pathogenesis [135].

In clinical human research, a previous study has found
that H, administration did not change the Alzheimer’s Dis-
ease Assessment Scale-cognitive subscale (ADAS-cog) scores
after one year in patients with mild cognitive impairment.
However, in the H, group of apolipoprotein E4 genotype
carriers, six and five out of seven subjects had improved
ADAS-cog and word recall task scores [136].

3.1.2. Effects of H, on PD. In animal experiments, 6-
hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyrine (MPTP) are neurotoxic by generat-
ing ROS and are therefore often used to produce models of
PD [137]. In a 6-OHDA-induced PD model, drinking 50%
saturated HW before or after stereotactic surgery was found
to prevent development and progression of the nigrostriatal
degeneration, effectively preventing the dopaminergic neu-
ron loss [138]. In MPTP-induced (including acute and
chronic) PD, drinking HW significantly reduced the loss of
dopaminergic neurons. This effect was independent of H,
concentration in water, such that H, significantly decreased
MPTP-induced accumulation of cellular 8-oxoguanine
(marker of DNA damage) and 4-HNE (marker of lipid per-
oxidation) and reduced oxidative stress in the brain [139].
Photobiomodulation (PBM) is an effective method to allevi-
ate PD symptoms by enhancing mitochondrial function and
boosting ATP production, although it is often accompanied
by increased ROS production. Concomitant treatment with
H, and PBM for a week significantly improved the Unified
Parkinson’s Disease Rating Scale (UPDRS) scores and elim-
inated the adverse effect of PBM [140]. Brenner et al. have
found that PD may be caused by melanin in the substantia
nigra, which fails to produce molecular H, from water disso-
ciation and subsequently cannot protect the brain from oxi-
dative stress. Therefore, restoring melanin function or
providing supplemental H, might be a potential therapy
for PD [141].
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A randomized clinical pilot study and a later multicenter
study showed that drinking HW improved the total UPDRS
scores, while placebo worsened them [142, 143]. However, a
pilot study carried out by the same team has revealed that
the inhalation of molecular H, gas was safe but did not show
any beneficial effects in patients with PD [144]. Another study
has shown that inhaling a 1.2-1.4% H,-air mixture for 10 min
twice a day for four weeks did not significantly influence the
clinical PD parameters but increased urinary 8-OHdG levels.
Researchers explained that the increased ROS levels are not
always associated with toxicity and disease. They also have
essential roles in modulating the cellular adaptation process
known as hormesis, which exerts a cytoprotective effect. This
beneficial increase in oxidative stress effect of H, is partly
mediated by hormetic mechanisms [145].

3.2. Effects of H, on CVDs. Ageing has a prominent effect on
the cardiovascular system, leading to an increase in incidence
of CVDs, such as atherosclerosis, myocardial infarction,
hypertension, and stroke [146, 147]. H, can protect the heart
and blood vessels from ageing-related degeneration.

3.2.1. Effect of H, on the Heart. H, can protect the heart from
myocardial infarct injuries and alleviate cardiohypertrophy
and heart failure. HRS significantly alleviated the inflamma-
tion and apoptosis induced by myocardial I/R injury by acti-
vating PINK1/Parkin-mediated mitophagy [116]. In a swine
model, inhalation of 2% H, gas improved myocardial stun-
ning. When the inhalation concentration was increased to
4%, H, gas significantly reduced myocardial infarct size
[148]. In humans, oxidative stress and inflammation are the
primary risk factors in hypertension-caused left ventricular
hypertrophy [149-151]. Chronic treatment with HRS effec-
tively attenuated left ventricular hypertrophy in rats, restored

the activity of antioxidant enzymes, suppressed NADPH oxi-
dase activity, inhibited NF-«B activation and proinflammatory
cytokines, and alleviated pressure overload-induced interstitial
fibrosis and cardiac dysfunction in rats [38, 152]. H, can espe-
cially alleviate mitochondrial dysfunction in hypertensive car-
diac hypertrophy by restoring ETC enzyme activity and
increasing levels of ATP production in the left ventricle [152].

In addition, H, improved interstitial fibrosis in the heart.
In pressure-overloaded heart injury, H, suppressed TGF-p1
signaling, effectively preventing heart failure [38, 153].
Moreover, H, inhibited p53-mediated apoptosis and allevi-
ated progression of chronic heart failure [154].

So far, the evidence for the protective effect of H, on the
heart has been restricted to animal experiments and human
studies remain limited. Interestingly, a prior study has found
that a decrease in exhaled H, during night sleep was associ-
ated with congestive heart failure (CHF) severity and can be
used as a marker of CHF [155].

3.2.2. Effect of H, on Blood Vessels. The vasculature is com-
posed of endothelial cells, vascular smooth muscle cells
(VSMCs), and fibroblasts. These components influence each
other in an autocrine or paracrine manner [156]. Vascular
ageing is a progressive decline of vascular function, includ-
ing endothelial dysfunction, inflammation, proliferation,
fibrosis, and calcification in VSMCs [157, 158]. Therefore,
it is one of the major risk factors of ageing-related CVDs.
HRW intake decreased serum concentrations of oxidized
low-density lipoprotein (LDL) and free fatty acids and
improved high-density lipoprotein (HDL) function and glu-
cose metabolism [12, 159, 160]. In an apolipoprotein E knock-
out mouse model of spontaneous atherosclerosis development,
drinking HW for four months significantly reduced atheroscle-
rotic lesions and decreased oxidative stress level in the aorta



[161]. H, can also stimulate Sirtl-mediated autophagy and
attenuate oxidized LDL-induced inflammation [64]. Treatment
with HRS in hypertensive rats markedly alleviated vascular
dysfunction, restored baroreflex function, and modulated NO
bioavailability by abating oxidative stress, suppressing inflam-
mation, and preserving mitochondrial function [152].

3.3. Effect of H, on Ageing-Related Pulmonary Disease. COPD
and idiopathic pulmonary fibrosis are regarded as lung dis-
eases related to accelerated ageing, which exhibit all of the hall-
marks of ageing [162]. COPD is the fourth leading cause of
death in the world, with a particularly increasing prevalence
in the elderly people [163]. It is an abnormal response to
chronic inflammation and injury with excessive activation of
macrophages, neutrophils, lymphocytes, and fibroblasts in
the lungs, leading to breathlessness and reduction in exercise
tolerance [164]. The etiology of COPD involves exposure to
external noxious particles or gases, particularly during CS
and indoor cooking [163]. Pulmonary fibrosis is one of the
major causes of morbidity, and there is still no effective treat-
ment to abate the aberrant repair [165]. Research evidence has
shown that ROS and inflammation play a crucial role in
inducing a fibrotic response in the lungs by modulating extra-
cellular matrix deposition [166, 167].

3.3.1. Effect of H, on COPD. H, therapy may be a novel and
effective treatment for COPD [164] with anti-inflammatory,
antioxidant, and antiapoptotic effects [168].

In animal experiments, HRS significantly alleviated CS
exposure caused by COPD, alleviated small-airway remodel-
ing and goblet-cell hyperplasia in the tracheal epithelium,
and reduced the number of inflammatory cells in the bron-
choalveolar lavage fluid (BALF) [169, 170]. In addition,
HRW treatment significantly reduced the mean linear inter-
cept, restored static lung compliance, decreased the levels of
oxidative DNA damage and senescence markers, and atten-
uated emphysema [51].

In clinical studies, inhalation of 2.4% H,-containing
steam mixed with gas for 45min in patients with asthma
and COPD significantly attenuated the inflammatory status
in the airways [88]. Similarly, a recent randomized multicen-
ter clinical trial showed that combination therapy of H, and
oxygen was superior compared to single oxygen therapy in
improving symptoms in patients with acute exacerbation
of COPD (AECOPD). As a result, breathlessness, cough,
and sputum scale scores were improved in the combination
group [171]. This may provide a feasible alternative emer-
gency management strategy for patients with AECOPD.

3.3.2. Effect of H, on Pulmonary Fibrosis. In bleomycin-induced
pulmonary fibrosis, H, inhalation reduced the ROS content. It
specifically inhibited TGF-f1, decreased the expression level
of mesenchymal cell marker vimentin, and increased the
expression level of the epithelial cell marker E-cadherin, there-
fore inhibiting bleomycin-induced epithelial-to-mesenchymal
transition (EMT) [172]. In a rheumatoid arthritis- (RA-) associ-
ated interstitial lung disease model, H, decreased the levels of
proinflammatory factors, apoptosis, and extracellular matrix
molecules associated with RA pathogenesis and fibrosis. It also
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ameliorated oxidative stress by decreasing serum levels of lipid
peroxide and 8-OHdG-positive cell numbers and alleviating
RA-associated lung fibrosis [173].

So far, human studies on the action of H, in pulmonary
fibrosis are still lacking.

3.4. Effect of H, on Metabolic Diseases. Ageing is associated
with body composition changes that cause glucose intolerance
and increase the risk of diabetes mellitus (DM). The incidence
of DM increases with age as the general population’s life
expectancy also increases [174]. Type 2 diabetes mellitus
(T2DM) is characterized by insulin resistance, hyperglycemia,
and relative impairment in insulin secretion. Both genetic and
environmental factors, such as obesity and ageing, play key
roles in its pathogenesis [175]. Long-term HW drinking sig-
nificantly improved obesity, hyperglycemia, and plasma tri-
glyceride levels in genetically diabetic male db/db mice. This
effect of H, on hyperglycemia was similar to a diet restriction.
H, improved the expression of hepatic fibroblast growth factor
21 (HFGF21), which has the function of enhancing fatty acid
and glucose expenditure [176]. By reducing oxidative stress
and enhancing the antioxidative system, H, may improve
insulin resistance and alleviate the symptoms of DM [177].
In patients with T2DM or impaired glucose tolerance,
consuming pure HRS for 8 weeks significantly improved
lipid and glucose metabolism [12]. Another study found that
after a single dose of acarbose in patients with T2DM, H, gas
production was inversely associated with a reduction in the
peripheral blood IL-18 mRNA level [178]. Therefore, H,
potentially inhibited the inflammatory process in T2DM.

3.5. Effects of H, on Cancer. There is no doubt that there is a
link between ageing and cancer, where the incidence of cancer
increases with age [179]. Although the molecular mechanisms
underlying the association of ageing and cancer remain
unknown, increased ROS levels, products of oxidative stress
and mitochondrial dysfunction that occur in ageing and
ageing-related disorders, have also been found in cancer [179].

Studies on H, as an anticancer therapy can be traced back
to 1975, when a two-week hyperbaric administration of H, gas
caused a marked regression in skin tumors [8]. Since then,
mounting evidence has shown that H, has an anticancer effect
in various types of cancer via diverse mechanisms.

By reducing hepatic oxidative stress, apoptosis, and
inflammation, H, prevents progression of nonalcoholic
steatohepatitis-related hepatocarcinogenesis [180]. However,
a previous study has found that combining H, with platinum
nanocolloids exerts carcinostatic and carcinocidal effects by
increasing H, peroxide generation and cell death in a human
gastric cancer cell line NUGC-4 [181]. It can also be inferred
that H, had an enhancing ROS effect in cancer cells but pro-
tected normal cells by inhibiting ROS. By downregulating
chromosome 3, which is a regulator of chromosome conden-
sation, H, inhibits lung cancer progression [127].

H, can also enhance the anticancer effects when com-
bined with other therapies. HW combined with 5-
fluorouracil enhanced cell apoptosis in colon cancer cells
[182]. A recent study has found that hydrogenated palla-
dium nanocrystals used as multifunctional H, carriers
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TaBLE 1: Mechanisms of H, in multiple ageing-related diseases.

Diseases Effect of H, References (cell/animal/human)
Alzheimer’s Inhibits JNK, nuclear NF-«B, IL-6, TNF-a, and IL- [132] Sprague-Dawley rats; [133] Sprague-Dawley
disease 13; inhibits MAD and 8-OHdG; upregulates Sirt1- male rats; [134] SK-N-MC cells; and [135]
FoxO3a; and ERB-BDNF signaling. APPswe/PS1dE9 mice.
. , Prevents dopaminergic neuron loss; decreases 8- ) .
Parl.<1nson S OHAG and 4-HNE; and hermetic regulation by [138] Sprague-Dawley rats; [139] C57BL/6] mice;
disease . . and [145] human.
increasing 8-OHdG.
Activates PINKI/Parkm—r.ne.:dlaFed mitophagy; [38] Wistar rats; [116] Wistar rats and H9C2 cells;
restores ETC enzyme activity; increases ATP . .
Heart . . ... [152] spontaneously hypertensive rats and Wistar-
production; suppresses NADPH oxidase; inhibits Kyoto rats; and [154] Sprague-Dawley rats
Neurodegenerative NF-«B; and inhibits p53-mediated apoptosis. 4 > prag Y ’
diseases Decreases oxidized LDL; improves HDL function [12] human; [64] RAW264.7 cell; [152]
Blood . - . . . .
vessels and glucose metabolism; activates Sirtl-mediated spontaneously hypertensive rats and Wistar-Kyoto
autophagy; and modulates NO bioavailability. rats; [159] human; and [160] human.
Alleviates small-airway remodeling and goblet-cell
COPD hyperplasia; restores static lung compliance; [51] senescence marker protein 30 knockout mice;
reduces inflammatory cells in BALF; and decreases [169] C57BL mice; and [170] Sprague-Dawley rats.
oxidative DNA damage.
Pulmona Reduces ROS content; inhibits TGF-f1and EMT;
ﬁbrosisry increases E-cadherin; and decreases 8-OHdG- [172] Wistar rats; [173] D1CC transgenic mice.
positive cell numbers.
metag:)r;iz;?y?;()l;z\s/{ctz i?lrslglillllp;Cels?srijngcl:ci(r)lscereases (12, 176, 177] human; [176] Sprague-Dawley rats,
Metabolic diseases DM  mp ’ C57BL/6 mice, and db/db mice; and [177]

Cancer

HFGF21; and inhibits peripheral blood IL-1p
mRNA.

Inhibits ROS, apoptosis, and inflammation in
lesion tissue; downregulates chromosome 3;
enhances anticancer effects; alleviates side effects
of anticancer therapies; modulates immune
function; and restores exhausted CD8+ T cells.

Sprague-Dawley rats.

[127] A549 and H1975 cells; [180] C57BL/6 mice;
[182] mouse colon carcinoma cell line and BALB/c
mice; [185] C57BL/6] mice and human lung
cancer cell lines A549; [186] Wistar albino rats;
[187] human; and [189] human.

TaBLE 2: Possible H, administration routes and their characteristics.

Possible H, administration routes

Advantages and issues

H, inhalation

Oral intake HW

Intravenous or intraperitoneal injection

of HS
H, bathing

Simple and easy; rapid action (concentration below 4% to prevent risk of explosion)

Practical and safe (H, must be stored in an aluminum container to avoid a decrease in H,
concentration)

Allows for H, delivery with great efficacy and highly accurate doses

H, can reach the entire body in only 10 min after bathing safely and easily

together with near-infrared irradiation caused a higher ini-
tial ROS loss, more apoptosis, and severe mitochondrial
metabolism inhibition in cancer cells, significantly enhanc-
ing the anticancer efficacy of thermal therapy [183].

In addition, H, can alleviate the side effects of other anti-
cancer therapies, such as chemotherapy and radiotherapy,
improving quality of life in cancer patients. For example,
H, protected irradiated cells from oxidative damage and
consequent apoptosis by reducing oxidative stress and
inflammation [184] and attenuated gefitinib-induced exacer-
bation of naphthalene-evoked acute lung injury while not
impairing antitumor activity [185]. A previous study has
found that intraperitoneal injection of HRS ameliorated
mortality, cardiac dysfunction, and histopathological
changes caused by doxorubicin in a rat model [186].

In patients with advanced non-small-cell lung cancer,
two weeks of H, inhalation can significantly reverse adaptive
and innate immune system senescence [187]. H, therapy can
decrease tumor progression and alleviate the adverse events
of medications [188]. In patients with advanced colorectal
cancer, H, restored the exhausted cluster of differentiated
(CD)8+ T cells and improved prognosis [189].

H, therapy in ageing-related diseases is summarized in
Table 1.

4. Administration Routs of H,

H, can be easily administered in multiple ways, including
inhalation, injection of HRS, drinking HRW, and bathing
in HW (Table 2). There are several factors that may limit
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the clinical use of H,. For example, H, is considered unsafe
at a concentration of 4%, which is explosive and might have
cytotoxic effects. Inhalation of H, achieves a slower increase
in its concentration compared to other administration
routes [190].

5. Conclusion and Perspectives

Although modern medicine has evolved rapidly in the 21
century, many significant questions still need to be
addressed and many diseases still cannot be cured. As a
“philosophical molecule,” H, may overcome intractable dis-
eases and ageing [41] and solve various problems via its use
alone or synergistically with other therapies. Moreover, H,
gas has demonstrated a safety profile in a number of
research studies, which is pivotal for clinical trials. H, mod-
ulates ageing mainly via antioxidative and anti-
inflammatory effects. In addition, it can regulate autophagy,
mTOR, mitochondria, and apoptosis. All of these factors
contribute to the ageing process and may take part in
ageing-related diseases. However, the details of specific
molecular mechanisms for the antiageing H, effects still
need further investigation, especially because ageing is a
complex and multifactor process. To date, nine ageing hall-
marks have been identified. In addition to the hallmarks dis-
cussed above, the influence of H, on other hallmarks needs
further study. For example, proteostasis can be destroyed
by ROS and lead to protein oxidation. Protein oxidation
can be divided into reversible and irreversible modifications
[191], in addition to counteracting protein damage by prote-
olysis and autophagy. Whether H, can repair the reversible
protein oxidation through its antioxidative effect is unclear.
Stem cell exhaustion is another ageing hallmark. Different
ROS doses have different roles in regulating stem cells.
Low ROS levels are regulated by intrinsic factors (cell respi-
ration or NADPH oxidase activity) and extrinsic factors
(stem cell factors or prostaglandin E2) to maintain stem cell
self-renewal. However, high ROS levels due to stress and
inflammation may cause stem cell exhaustion, induce stem
cell differentiation, and enhance motility [192]. Whether
H, can modulate and maintain ROS at a suitable level and
facilitate stem cell metabolism requires further study. In
addition to the nine hallmarks above, circadian clocks mod-
ulate various biological processes and are progressively lost
during the ageing process. Disruption of the circadian clock
may influence the ageing process and pathogenesis of age-
related diseases. Progressive loss of the circadian clock is also
categorized as the common hallmark of ageing [193]. Studies
have found that there is a connection between the circadian
clock and oxidative stress [194, 195]. Interestingly, intestinal
microbiota that regularly produce H, gas also undergo diur-
nal oscillations in function and composition, and the
amount of H, generated varies depending on the individual
and time of day. Therefore, there may be some interconnec-
tedness between H, and circadian rhythms [190], and this
mechanism still needs to be elucidated. In addition, recent
investigations about reductive stress, the counterpart of oxi-
dative stress, which is defined as a condition of excess accu-
mulation of reducing equivalents [196], have shown that
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overexpression of antioxidant enzymatic systems can lead
to excess reducing equivalents and deplete ROS. Further-
more, feedback regulation establishment in which chronic
reductive stress induces oxidative stress, in turn stimulates
reductive stress [197]. Whether a long-term H, administra-
tion elicits reductive stress and influences ageing and
ageing-related diseases requires further study in the future.
Finally, many of the studies on H, have been limited to the
topics of ageing-related diseases and may not be directly
related to ageing under normal physiological conditions.
The majority of the studies on H, have been performed
using in vivo animal and in vitro cell models. Therefore, its
applications in humans remain unknown and require clini-
cal studies to validate. Therefore, further long-term studies
are needed to investigate the influence of H, on the process
of physiological ageing. Nevertheless, we believe that H,
plays a critical role in the ageing process and ageing-
related diseases, providing optimistic prospects for therapy
in this area.
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RNS: Reactive nitrogen species
ROS: Reactive oxygen species
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TGF: Transforming growth factor
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TNF-a: Tumor necrosis factor-a
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